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SUMMARY

A method of anaslysis is developed- for two-dimensional flow on.
general surfaces of revolution in turbomachines with arbitrary blade
shapes. The method of analysis is developed for steady, compressible,
nonviscous, irrotational flow that is assumed uniform normal to the
surfaces of revolution. Incompressible solutions on a mean surface of
revolution between the hub and shroud are presented for four flow rates
through each of two centrifugal impellers with the same hub-shroud con-
tours but with different blade spacings. In addition, correlation
equations asre developed whereby the velocity components and the stream
function distribution can be predicted for compressible or incompress-
ible flow in stralght-bladed impellers only, with any tip speed, flow

rate, area variation, blade spacing, and for any flow surface of revo-
Jution.

INTRODUCTION

In order to achieve substantial improvements in‘compressor and tur-
bine efficiency, new methods of design must be developed, and these
methods should be based on detailed knowledge of flow conditions within
turbomachines (ccampressors and turbines). The purpose of the analysis
method. developed at the NACA Lewis lsboratory .and presented in this
report is to provide a tool whereby increased knowledge of the flow
characteristics in turbomachines can be acquired. In addition the two-
dimensional numerical results presented in this report provide the basis
for future comparison with the results of three-dimensional solutions,

. Beveral two-dimensional methods of analysis have. already been
developed (references 1 and 2, for example). In general, these varigug .
methods differ in technique and scope of application. In particular
in reference 2 a method of -analysis.is developed for two-dimensional
compressible flow in turbomachines }zith conic florw surfaces generated -
about the axis of the. _turb‘omachine by’stzjaight‘ lines . In this report
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the analysis method of reference 2 1s extended to include arbitrary sur-
faces of revolution generated sbout axes of turbomechines. In addition
correlation equations are developed for the rapid estimation of flow
condltions in impellers with straight blades.

METHOD OF ANAIYSIS
Prelimingry Considerstions

For given compressor operating conditions, a ccamplete solution for
the flow through turbomachines depends on the machine geometry (three-
dimensional effects) and on the fluid properties (compressibility and
viscosity). The effects of compressibility are considered in the analysis
method of this report but the effects of viscosity are not. BSome three-
dimensional effects are indicated by the combination of two-dimensional
solutions. The idea of these guasi-three-dimensional solutions is con-

sldered next.

Quasi-three-dimensional solutlons. - Conslder the flow of an ideal
fluld through a typical passage between blades such as shown in figure 1.
The £luid is free to follow whatever path the pressure and inexrtia forces
require of it. If, however, the mmber of blades in the turbomachine is
considered to approach infinity, the space between blades, as well as the
blade thickness, approaches zero and the path of the fluid is limited to
the curved mean surface of the blade. The fluild motion is thus reduced
from a general three-dimensional motion to a two-dimensional motion
restricted to the mean blade surface. The streamlines of this two-
dimensional motion can be projected on the meridional plane (exial-radlal
plene) as shown in figure 2. The solutions are axially symmetrical
because the infinite number of blades prevent the fluid properties from
varying about the axis of the turbomachine,

Axial-pymmetry solutions esteblish mean circumferential flow con-
ditions, but for finite blade spacing flow conditions vary circumferen-
tially, as well as from hub to shroud. In order to Investigate the cir-
cumferential variation, which is superimposed on the circumferential
mean flow conditions obtelined by the exial-symmetry solutiomn, it is
assumed that the flow is limited to surfaces of revolution generated by
rotating the meridionsl stresmlines of the axial-symmetry solution
(fig. 2) =about the axis of the turbomachine. If these meridional stream-
lines are selected with sufficiently close spacing, flow conditions can
be considered uniform normal to these surfaces of revolution. Thus the
flow 1s limited to two-dimensional motion on flow surfaces of revolution.

Blade-to-blade solutions can be obtained for every flow surface of
revolution generated by the streamlines in the meridionsel plane., There-
fore, flow conditions can be determined approximastely throughout the
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pasgdge. This resulting quasi-three-dimensional solution is obtained by
the combination of two types of two-dimensional solution: exial-symmetry
solution and blade-to-blade solution. Although this combination of two-
dimensional solutions does not result in a rigorous three~dimensional
solution, because, for exsmple, the flow has been constrained to surfaces
of revolution, the combination must result in a better picture of the
true flow conditions than does elther of the two-dimensional solutions
alone. Analysis methods for the axlal-symmetry type of solution are
developed in references 3 and 4, for example. In this report analysis
methods are developed far the blade-to-blade type of solution on flow
surfaces of revolution generated around the axis of the turbcmachine by
known, or assumed, streamlines in the meridionsl plane.

Coordinates. - The cylindrical coordinates R, &, and Z shown
in figure 3 are convenlient to use 1n theoretical studies of the flow in
turbomachines. (A1l symbols are defined in the appendix.) These coor-
dinates are dimensionless, the linear coordinates R and Z having
been divided by the blade-tip radius xp (so that ‘R equals 1.0 at the

blade tip, for example). The coordinate system rotates with the blade
row about the 2Z-axis. The anguler velocity @ is always considered
positive and in the counterclockwise direction as shown in figure 3.

Velocity components. - The velocity @ relative to the rotating
coordinate system has components Qp, Qy, and: QZ/,in the R, 6, and

7 directions, respectively (fig. 3). These velocities are dimensionless,
having been divided by the stagnation speed of sound c, upstream of

the blade row, where

2 = yer*T, . (1)

In equation (1) R* is the gas comstant, 1 is the ratio of specific
heats, and T, is the stagnation (total$ temperature upstream of the

blade row. The blade-tip speed is likewise dimensionless and becomes the
conventional blade-tip Mach mumber Mg, which is defined by

ar

m-= - @
- ‘o

Thus the tangential velocity of the blade at any radijus R 1is equal to
RMp and the sbsolute tangential velocity of the fluid is equal to

(RMT + Qe) .
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In addition to the three components of the relative velocity Qp,
Q, and Qy it is convenlent to define a fourth velocity component,

lying in the meridional plasne (RZ-plene) and defined as the meridional
velocity Qy, where fram figure 3

Qf =G + Qg (3)

The meridional velocity Qy helps define the angle a, shown in fig-
ure 3, from which figure

Qg = Qysinc (4)
Qg = QMlcos @ ' (5)

Thermodynamic relations. - From the general energy equation, in the
absence of heat transfer, it can be shown that along a streamline the
static (stream) temperature T. is relsted to the relative velocity Q

by (reference 2)

'Ef.‘% =1+ r—é—J—' [(RMI)Z - o - ZMT)U] | ()

where the subscript U refers to conditions far upstream of the blade
row and where A 1s the whirl ratio defined as the sbsolute moment of

momentum divided by ToCo and. given by

A = R(RMp + Q) (7

For isentropic flow the pressure ratio P and the density ratio p/p,
are likewise relgted to the relative veloecity Q by

T J_
r-1 -1
and
£ 2
T-1 -1
2-@) (Rt Som] T o

where p and p are the statlic pressure and density, respectively,
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Analysis

A streamline that was obtelned from an axisl-symmetry solution in
the meridionsal plane (fig. 2, for example) is shown in figure 4 together
with the coordinates, velocities, and so forth at a point on the stream-
line. At thls point s tangent to the streamline in the meridional plane
intersects the axis of the turbomachine with the angle «, as indicated,
If this tangent line is rotated about the axis, it generates the surface
of a cone that is tangent to the flow surface of revolution obtained by
rotating the streamline (fig, 4). At the circumferential line of
tangency a fluid particle on the flow surface of revolution is also on
the conic flow surface. Thils fluid particle is shown in figure 5 on a
developed vilew of the cone surface. The height ratio H of the fluld
partilcle is defined by

b
i

vhere h (fig. 2) is the local spacing between center Iines of the chan-
nels formed by the adjacent streamlines (fig, 2) on either side of the
streemline that generates the surface of revolution,

H = (10)

Absolute irrotational motion, ~ In the absence of ghock, viscous
effects, and so forth, the gbsolute motion of the fluid everywhere on the
surface of revolution is isentropic and hence lrrotational so that the
gbsolute circulation 4I' around every fluid partical 1s zero apd from
flgure B

Qy @B
@:o;%[(%fp%)nae]da-%[ﬁﬁ]ae
from which

0 =2 ‘ T 2
=eRMpelna + Qgeina +Relna -z - 35 (11)

Continuity., ~« From contimuity consid@i'ations for the fluid particle
in figure » o .

9 Q B ).
ﬁ’(%QMm)+35(%%BMG>“O (12)
vhere H I8 a function of R along the surface of revolution
H= ﬂ(B)




6 NACA TN 2654

A stream function ¢ satisfies the contimuity equation (12) if defined
as

3t
%z—-&qjesigm

Transformation of coordinates. - For convenlence in the relaxation
solution the following transformation of coordinates is Introduced:

(13)

1 dR
at = A8) sina R (l4=a)
and
dag
dny = == ~ (14v)

where A6 1s the angular spacing of the blades about the axis of the
turbomachine. Equation (14a) can be integrated to give t as a function
of R with ¢ arbitrarily equal to zero when R equals one, and equa-

tion (14b) can be integrated to give 7 equal to -A%., By this trans-

formaetion, which is confarmal, the curved flow surface of revolution
becomes a flat plane (§n-plane). Idnes of constant ¢ and 3 are shown
transformed onto a flow surface of revolution in figure 6. The problem
is solved in the ¢n-plane and transformed back to the curved flow surface
of revolution. The advantages of this transformation are: first, a
warping of the blade shape which for stralght blades results in straight
parallel boundsries (blades) in the transformed plane, thus permitting
equal grid spacing for solution by relaxation methods; and second, a
reduction in the mumber of terms in the fingl differentlial equation for
the stream function distribution, thus reducing the labor involved in
obtaining a relaxation solution.

General differential equation for streem function distributiond - '
In terms of the transformed coordinates, equation (11) for absolute irro-
tational motion becomes

) %y oy
O_ZR_MIAGsindJ+Q9AGSinGa+8'§—-B—n’— ' (1{5),
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and equation (13) for the stream function becomes

%%: = 'pE; Qy HR (AB)
5 (16)
- om oo

Equations (15) and (16) combine to give (note that A and R are inde-
pendent of 1)

5 2 d In £ d 1n £
B$+B$_BlnH ) Po ) Po )
3§2 a.qz ot ot 4 4 o

ZBE-ERZ(AG)ZMIBina.:O (17) -
(o]

In this equation the density ratio 595 18 related to the velocity com-
ponents @ and Q, by equation (9) where Q° = Gy + Qy°, and the
veloclty components are related to the streem function ¢ by equs-

tion (16). This system of equations ((9), (16), and (17)) can be solved
for gilven boundary conditions by relaxation methods (refa:ences 2 and 5)
to give the distribution of ¥ for two-dimensional flow past srbitrary
bladesshapes on the flow surface of revolution. The velocity components,
and therefore the pressure, density, and so forth, can be obtained from
the distribution of ¥ by means of equation (18).

Incompressible flow. - For incompressible flow the stagnation speed
of sound contained in the definition of Q and MI is undefined and

its use can be eliminated by considering the ratio vhich is the

Q
EI'—’
ratio of the relative velocity to the impeller tip speed. Thus, with

BE equal to one for incompressible flow equation (16) becomes
o

ov; Q
a‘n—i' - -MIH MR (A6)

(164a)
aq;i QG
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where from equations (16) ¥; is related to ¥ by

¥ =
17 W
go that equation (17) becomes after dividing by Mp .

2 2
B*i_l_a‘yi_alnﬂa*i
a§2 2 ot ot

which is the partiael differential equation used for the mmerical solu-
tions presented in this report.

Method of Solutlon

Numerical methods. - Solutions of the differential equations (17)
or (175) for given blade shapes on given, arbitrary surfaces of revolu-
tion and for given flow rates and blade-tip Mach numbers are obtained by
relaxation methods using techniques discussed in reference 2.

Boundary considerations. - As in reference 2 it can be shown from
continuity considerations that if ¢ 1is zero along the driving face of
the blade (blade surface in the direction of rotation) the stresm func-
tion VY4 along the trailing face is constant and equal to

¥y = o(40) + (18)
In equation (18) the channel flow coefficient @ is defined by

w - T y
=t ‘ s - (19
? PolgC ° (19)

where W is the flow rate through the chamnel and agp is the channel
flow area at the blade tip ‘

g = rThT(AB) (192)
For incompressible flow ‘ ‘
| e A9 20

- 28R (A9)% sina = 0O (17a)
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The Joukowskl condition snd other boundary conditions are discussed
In reference 2.

NUMERICAL EXAMPLES

Solutions are presented for four flow rates through each of two
centrifugal impellers with the same hub-shroud contours but with differ-
ent blade spacings. The solutions are for incompressible flow on a sur-
face of revolution generated by the mean streamline of an axial-symmetry
solution.

Design and Operating Conditions

Impeller geometry. - The hub-shroud profile of the impellers is
described in figure 7. The impeller blades are straight and thin, and
for mathematical simplicity extend indefinitely fer upstream parallel
with the axis of the impeller. The diffuser is vaneless. Solutions
were obtalined for two blade spacings that, after accounting for the
blade thickness, measured 14.67° and 32.80° gbout the axis.

Operating conditlions. - The fluid was considered to be incompress-
ible and nonviscous. The solutlons were obtained on a flow surface of
revolution genersted by the mean (0.5) streamline of the axial-symmetry
solution in figure 2 (the R,Z-coordinates of which streamline were
obtained from results of reference 4 and are given in table I together
with sin o and H). Four solutions for different flow rates were
obtained for each of the two blade spacings. At low flow rates an eddy
(reference 2) exists on the driving face of the blade and at zero flow
(closed throttle but impeller rotating) the eddy occupies the entire pas-
sage. As indicated in reference 2 the eddy flow, which consists of fluid
that remains in the impeller and rotates relative to the impeller with an
angular velocity equal and opposite to that of the impeller, results
from the condition of gbsolute irrotational fluid motion. The four
solutions for each blade spacing were obtained for the following flow
conditions: (1) eddy flow (no through flow so that the eddy occupies
entire channel), (2) zero eddy flow (through flow rate just sufficient
to eliminate eddy), (3) half eddy flow (half.of the through flow rate
required to eliminate eddy), and (4) through flow rate used in axial-
symmetry solution (fig. 2) of reference 4. These flow rates can be
expressed by ratlos of upstream axial velocity to impeller tip speed .
(QZ/MT)U The through flow rate required to eliminate the eddy varies

with the blade spacing so that the values of . (QZ/MT)U for the four

flow conditions described are given for both blade spacings in the
following table:
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Qz>
Mp/y
Blade spacing
Flow A8, deg
condition 14..67| 32.80
Eddy flow 0 0
One half eddy flow| .060 .105
Zero eddy flow .120 .210
Flow rate of .3429 | .3429
axial symmetry
solution

The solutions for the variocus ratios of flow rate to impeller +ip
speed were obtalned by superposition of the eddy flow solution (rotating
impeller with no through flow) with verious percentages of the through
flow solution (flow through nonrotating impeller).

Results

The results of the numerical examples are presented in figures 8
to 11. The results are plotted on the surface of revolution between two
impeller blades. The §,n coordinate system is shown on the surface of
revolution. The relation between §(A9) and the specified cylindrical
coordinates R and Z along the surface of revolution was obtained
from a numerical integration of equation (léa) and is glven in,table I.
From equation (14b) 1 is related to 6 by

8
M=

Streamlines. - The stregmline patterns on the surface of revolutlion
are shown in figures 8 and 9 for the 32.80° and the 14.67° angular blade
spacings, respectively. For each blade spacing the streamlines are given
for the four specified flow rates. The impeller rotates in the clockwise
direction so that the driving face of a blade is on the left of the
channel and the trailing face on the right. Except for the complete eddy
flow solutions (figs. 8(a) and 9(a)) the streamlines are designated by a
stream function ratio xyi/ (ﬂri)t such that the value of this ratio indi-

cates the percentage of total channel flow between the streamline and the
driving face of the blade. (For the complete eddy flow solutions the
stream function ratio wyi/ (‘{"i)min indicates the percentage of total

flow rate circulating within the channel between the streamline and the
nearest blade.) At each radius the spacing of the streamline is indi-
cative of the relative velocity, with close spacing indicating high

9972
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velocities and wide spacing indicating low velocities. Thus, the veloc-
ities are higher on the trailing face of the blade than on the driving
face, except at the blade tip where the velocities are equal on both
faces and except for the complete eddy flow solutions (figs. 8(a)

and 9(a)) where the velocities are equal on both faces at equal radii.

As indicated In the figures the fluid within the eddy remains in
the impeller and rotates in the opposite direction to that of the impeller
so0 that the velocities are inward along the driving face. (Also see
reference 2, for example.) The eddy flow, which results from the condi-
tion of @bsolute irrotationsl motion, is associated with changes in
radius along the rotating flow surface and disappears as the upstream
surface becomes cylindrical (constant radius). This situstion is most
clearly evident in the solutions for no through flow (figs. 8(a)
and 9(a)). Thus, for quasi-three-dimensional solutions the eddy flow
disappears when the surfaces of revolution become cylindrical. (This
condition is commonly assumed when two-dimensional cascade data are
applied to the design of axial-flow turbomachines.) For rigorous three-
dimensional solutions the eddy continues to exist but ite plane is normal
to the axis of the turbomachine and results only in a distortion of the '
initially cylindricel surface. If this distortion is neglected by
assuming the flow is constralined to surfaces of revolution, the eddy
disappears on cylindricgl surfaces.

In the solutions for no through flow (figs. 8(a) and 9(a)) the
greeter magnitude of (1];1)min for A6 equal to 32.80° than for A9

equal to 14.67° indicates that the magnitude of the eddy flow rate
increases with increasing blade spacing.

Relative velocity components. - Iines of constant relative velocity
components are shown in figures 10 and 11 for the 32.80° and 14.67° angu-
lar blade spacings, respectively. The meridional and relative tangential
Q Q
—M—;-i and é) are plotted and only the solutions
for the eddy flow are considered. (For solutions with through flow,

Q Q
2 remains the same and M is increased an amount, given in table I,

Mp My

) Q
that is proportional to ('E%) and is a function of E(A6) only.)
U

velocity components

Q
2]
Iines of constant relative tangential velocity 'EE are plotted in

figures 10(a) and 11(a). The values of ] near the impeller tip are

Mg
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negative so that the slip factor p (defined as the ratio of the average
ebsolute tangential velocity at the impeller tip to the impeller tip
speed) is less than 1.0. The resulting slip factors for the two blade

spacings are

Blade Slip
spacing | factor
AP B
(deg) ,

14.67 | 0.9111
32.80 .8142

Because -?% is unaffected ‘By the through flow the values of 1 are

independent of the flow rate (also see reference 6). The values of

%% at lower values of R upstream of the lmpeller tip approach a max-
imum positive value and then decrease to zero as the surface of revolu-
tion becomes cylindrical. It is noted that the maximum positive value

%

of El‘_ is considergbly larger for the wider blade spacing.

Lines of constant meridional velocity 13115 gre plotted in fig-

ures 10(b) and 11(b). The values of ;I—M are negative along the driving

face and positive along the tralling face with zero values along the

Y

center line of the channel between blades. The maximum values of EI.
occur on the blade surfaces near the impeller tip and as the radius

decreases —M-E decreases and approaches zero as the upstream surface of

Q
revolution becomes cylindrical. It is noted, as for ﬁ.‘[‘g’ that as the

blade spacing increases the magnitude of —M; increases.
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CORREIATION OF RESULTS

The relaxation solutions presented in this report required consid-
ergble lagbor and it is therefore desirable to have a more rapid method
of analysis to serve as a useful engineering tool. The correlation
equations to be presented 1n this section have been developed for this
objective. These equations are limited to impellers with straight blades
on arbitrary surfaces of revolution, but other less accurate methods of
analysis have been developed for blades with arbitrary shape (refer-
ence 7, for example). The correlation equations to be developed are an
extension of the correlation equations developed for straight blades on
conic flow surfaces of revolution in reference 6. This extension endgbles
the correlation equations to gpply to erbitrary surfaces of revolution.
In this report, as well as in reference 6, the correlation equations are
developed to predict the distribution of the relative velocity components
Q,e and QM and the stream function + throughout the impeller passage.

The correletion equations asre developed from the fundasmental conditions
of continuilty and absolute irrotational motion aend from certain observed
results of the relaxastion solutions. These correlation equations predict
flow conditions in straight-bladed impellers with any tip speed, flow
rate, area varlation, blade spacing, and for any flow surface of revolu-
tion. The correlation equations determine these flow conditions from
various parsmeters that describe the design and operating conditions of
the impeller and from tabulated values of any known “"standsrd" solution
(such as that given in reference 6).

In the correlation equations of this report, and of reference 6, the
standard conditions (obtained from any known solution, reference 6, for
example) and the nonstandard conditions (being investigated by the corre-
lation equations) are evaluated at the same values of { and 7. The
effect of the shape of the surface of revolution on the fluid properties
at a given point (§,7) on the surface of revolution is determined by
the effect of the shape on s8in a, which term appears in the correlation
equations, and by the effect of the shape on E, which quantity is
related to sin o by equation (1l4a).

Compressible flow. - In the previous development of correlation
equations the local veloclty was found to be, in effect, made up of the
average value of Q’M at the given radius and superimposed velocity com-

ponents caused by the rotation of the channel. The superimposed velocity
components were sufficiently small not to be greatly affected by compress-
1bility, which was only considered to affect the average value of Q’M

Because this effect on Qy 1s easily incorporated, the correlation equa-

tions in this report are developed for compressible as well as incompress-
ible flow.
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Assume that the Qg component of the relative veloclty is corre-
lated by

Q' = A{Qg)g | (21)

vwhere the superscript prime indicates spproximste values determined by
the correlstlon equations, where the subscript s Indicates standard
values (glven in tables of reference 6, for example), and where

M, (AB) sin a
= Ty (20) eim o,

(22)

For constant o equation (Zl) is identical to the corresponding corre-
lation eqution of reference 6. (Note the different definition of A9

in reference 6.)

From equation (21) and using the identical procedure described in
reference 6, the correlation equation for Qy becomes

U = @y + A o - (@],

[(AB) sin o - (A9), sin a.s] + (R - Rg) (Mp AB) , sin a.;

A2 - 1) { (%)

where R 1is a known function of { and where from one-dimensional con-
timity considerations (reference 6)

(23)

(R oy = B;;L (24)
— RH
pO

In equation (24) the average density ratio p, /p, 18 obtained from

equation (9) by assuming that for straight blades the relative tangential
velocity is zero and the meridiongl veloclty 1s equal to its average
value so that

2 . 2
~ (QM)av

9972
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Iikewise the correlation equation for the stream function ¥ Dbecomes

te ([ (9, 090 {82 [ e

(49), sin or.s:l + (R - Ry) (Mp o), sin'as}) (25)

For a complete eddy flow (no through flow) ¥y and (Qy,, are zero so

that equation (25) becomes indeterminste. If, however, both sides of
equation (25) are multiplied by

.
¥y = 5o (Y, TR (89)

vhich equality is obtained from equations (18) and (24), equation (25)
can be evaluated directly for vV'. :

Incompressible flow. - For incompressible flow the stagnation speed
of sbund can, as before, be eliminated from consideration by expressing
Q@ and ¥ as ratios of MI Thus for incompressible flow the correla-

tion equations become
e
—) =A{ — 2la)
(s it (

where

_ (A8) sin o :
A* = [(AB) = “]s (22a)

() -] (- [92).
A* (29 - 1) %(%)s [(Ae) sin a - (A9)  sin a,s:l +

(R - Rg) (48)4 sin ag (23a)
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v g (o] -
Mp

o

(n-1n

[(Qe)] [(AB) sin o - (Af), sin a]

(R - R;)(A8) sin o ~ (258)

‘ Q ¥
0 i
Representative values of (—) ( ——> and obtained by
Mp /7 \Mp /)’ AP

the relaxation solutions of this report are compared in figures 12 to 14
with the corresponding values given by the correlation equations [(21a),
(23a) and (25a)] using the standard solution given in reference 6.
Perfect sgreement corresponds to the 45° straight line, and it is seen
that the correlation equations are accurate.

Effect of flow surface shape. - The correlation equation (23a) has
been used to campute the velocity distribution on the blade surfaces for
incompressible flow in impellers with straight blades, with constant
flow area along the flow surface, and with various shapes of flow sur-
faces of revolution. These flow surfaces are described by the shape of
their generating lines (meridional streamlines) in the RZ-plane. In
order to demonstrate the effect of flow surface shape, calculations have
been carried out for generating lines that are described by the equation

R = % [(zz it 1] (26)

The family of generating lines is given by various values for the
parameter n, and as Indicated in figure 15, the surfaces in all cases
start at a radius R of 0.5 (impeller inlet) and end at a radius R of

1.0 (impeller tip).

The resulting velocity distributions on the blade surfaces are
plotted in figure 16. As the value of n decreases,the difference in
velocity on the two blade surfaces toward the :meeller tip décreases and
in the limit as n approaches zero the velocities become equal on both

9972
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surfaces. At this 1limiting value of n equal zero the flow is axial
(see generating line for n equal to zero in fig. 15) and the veloc-

ities on both blade surfaces are equal to the average velocity (ﬁ—T) R
av

which for these examples is constant becau.se of the constant prescribed
flow area.

As the value of n increases the differencé in velocity on the two
blade surfaces toward the impeller tip increases and in the limit ag n
approaches infinity this difference approaches that for a radial flow
impeller (see generating line for n equal to infinity in figure 15).

If the velocity distribution curves in figure 16 were extrapolated
to lower values of R, the curves would cross because, gs indicated in
figure 15, the flow surfaces that are more nearly radial near the
impeller tip are more nearly axial near the impeller inlet, and vice

‘versa.

SUIMARX(IFRESULEIB

A general method of ana_lysis is developed for steady, two-
dimensional, compressible, nonviscous, irrotational flow between arbi-
trary blade shapes on arbitrary flow surfaces of revolution in turbo-
machines. Incompressible solutions are presented for four flow rates
through each of two centrifugal Impellers with the same hub-shroud con- .
tours but with different blade spacings. In addition, correlation equa-
tlons are developed whereby the velocity components and the stream func-
tion distribution can be predicted for compressible or incompressible
flow in straight-bladed impellers only, with any tip speed, flow rate,
area variation, blade spacing, and for any flow surface of revolution.

Lewis Flight Propulsion Laboratory . i ‘ .
Netionsl Advisory Committée for Aeronasutics =~ = °
Cleveland, Ohio, December 23, 1951 .
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APPENDIX
SYMBOLS PN
&
The followlng symbols are used in this report:
A parsmeter, equation (22)
A* parameter, equation (22a)
aq flow area at channel tip, equation (19a)
Co stagnation speed of sound upstream of turbamachine, equa-
tion (1)
gravitational acceleration
H height ratio, equation (10)
h spacing between center lines of channels formed by streamlines
adjacent to streamline that generates surface of revolution, -
figure 2
Mq blede-tip Mach number, equation (2) .
n exponent, equation (26)
P pressure ratio, equation (8)
P statlc pressure
Q relative velocity expressed as ratio of cg
Qu meridional component of @, equation (3)
Qr,Q9,Qz components of Q@ in R, 6, and Z directions, respectively
R,6,% cylindrical coordinates, dimensionless (linear coordinates R
and Z expressed as ratios of rT)
R* perfect gas constant
Tp blade-tip radius
T static temperature . .
W total flow rate through channel (of height h) between two .

NACA TN 2654

blades
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o angle, flgures 3 and 4

r dimensionless fluid circulation

''e ratio of specific heats

1 transformed coordinate, equation (14b)
aY:] engular blade spacing about axis of turbamachine
A whirl ratio, equation (7)

7! slip factor

4 transformed coordinate, equation (14a)
P static weight density

P chennel flow coefficient, equation (19)
¥ stream function, equation (13)

® sngular velocity of blade row
Subsecripts:

av average

i incompressible

min minimm

0 stagnation condition upstream of turbomachine
8 standerd solution

T blade tip

t trailing face of blade

0) far upstream of turbomachine
Buperscripts:

! estimated by correlation equations
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TABLE I -~ CHARACTERISTICS (OF MEAN FLOW SURFACE OF

REVOLUTION USED IN NUMERICAL EXAMPLES

Qpe/ M
. A8 R Z sin o H
: (&z/Mp)y
(2)
-1.792 |0.4915 | -0.3394 | 0.0082 | 3.659 1.001
-1.664 .4920 | - .2767 0140 | 3.652 1.002
-1.536 .4930 | - .2135 | .0218 | 3.636 1.004
-1.408 .4950 | - .1502 .0333 | 3.608 1,008
~1.280 | .4978 | - .0870 | .0555 | 3.565 1.015
-1,152 .5021 | - .0232 .0800 | 3.493 1.027
-1.024 | .5096 L0411 | L1422 | 3,364 1.050
- .896 | .5212 .1058 .2222 | 3.160 1.093
- 768 | .5408 1710 | .3550 |2.858 1.165
- .640 5722 .2348 .5372 | 2,544 1.237
- .512 | .6205 .2933 | .7312 | 2.236 1.298
.~ 384 .6890 . 3408 .8888 | 1,901 1.374
- .256 7770 . 3737 .9678 |1,542 1.502
~ .128 | .8803 . 3931 .9913 |1.239 1.651
0] 1.0000 .4052 .9968 | 1.0000 1.800
.128 [1.1368 .4120 | .9996 | .8700| 1.820
.256 |1.2919 .4127 [1.0000 | .8664 | 1.608

8Values of (Qy/Myp)y for flow rates used in
numerical examples of this report are given
in the text under Operating conditions.

21



Figure 1.
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Direction of rotation

- Chennel between blades of typical high-solidity blade row.
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Stream function
ratio

Mean streamline used
to generate surface
of revolution for
solutions of this

report—\\

Axis of turbomachine

AN AN

77777777777

Hub

23

LLLLLLL L 2e

AR

Filgure 2. - Streamlines in meridional plane for axial-symmetry
solution of chammel described in figure 7. Streamline
designation indicates percentage of flow through channel
between streamline and hub. Incompressible flow; Qz/Mp
equal to 0.3429.far upstream (reference 4).




. Figure 3. - Cylindrical coordinates and velocity components relative to rotating blade
row. All queantitles are dimensionless, ILinear coordinmtes are measured in units of

blade tip radius; velocity components are measured in units of stagnation speed of
sound upstream of blade row,

i
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\ Streamline in

yneridional plane

Qg BN /,///
e S
a
Tangent to
streamline
0

Z

Figure 4. -~ Coordlnates, velocities, and so forth
at point on streamline in meridional plane (axlal-
symmetry solution).

i

w
Q

Rde F——II-—4

Front view Side view

Figure 5. - Fluld particle on developed surface of cone at
point- that-is tangent to flpw s@?fgce'qf'revolution.
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Transformed {T-plane
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Axiel distance, Z

Flgure 7. - Hub-shroud dimensions of impeller for numerical
examples. Vaneless diffuser; straight impeller blades
extended indefinitely far upstream parallel with-axis of
impelier.
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. (d) Flow rate of axial-symmetry solution
(reference 4).

Flgure 9. - Concluded. Streamlines on mean surface
of revolution for impeller with A€ = 14.67°.
580.
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(2) Relative tangen%al velocity component,
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. Figure 13, - Comparison between relaxation and estimated values of g_;.
Correlation equation (23a).




Estimated value of stream function, ¥y
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Figure 14. - Camparison between relaxation and estimated values of V4.
Correlntion equation (25a).
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Radius ratio, R

1

.5 .6 7 .8

Axial distance ratio;, Z

Figure 15. - Generating lines in axial-radial plane that are
rotated about axis of lmpeller to obtain flow surfaces of
revolution.
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Valoelty ratio along blade surfacas, I‘Il;
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Flgurs 18. - Velooity-ratia aldng bladea for varicus ahapes of flow surface of rovolution_.
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